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Numerical simulations of time-dependent phenomena involving magnetohydrodynamic 
(MHD) waves encounter serious problems due to artificial reflection of waves at numerical 
boundaries in situations where the time-dependent magnetic fields external to those boun- 
daries are not known. A method developed for determining radiative (i.e., nonreflecting) 
boundary conditions for waves in ordinary fluids is generalized in this paper to treat isother- 
mal MHD waves. A test problem is considered for which analytic results have been obtained, 
namely, magnetic braking of a rigidly rotating disk embedded in a diNerentia11y rotating fluid. 
Comparison is made between results obtained from numerical simulations, with and without 
the radiative boundary treatment developed here, and the analytic results. 0 1989 Academic 

Press, Inc. 

1. INTRODUCTION 

One of the difficulties encountered in numerical simulations of problems which 
involve no physical boundaries (many problems in astrophysics) is the determina- 
tion of the field components and material velocities at the boundary of the calcula- 
tion. Such determinations often require information from outside the numerical 
grid. Fixing the values of these variables artificially at computational boundaries 
causes spurious reflection of wave-related properties (e.g., the energy) back into the 
numerical grid. This can eventually affect the results in the interior of the numerical 
grid enough to make them unreliable. A method has been developed by Thompson 
[ 1 ] for nonreflecting boundary conditions, in the case of multi-dimensional inviscid 
fluid dynamics. This approach uses the methd of characteristics to separate the 
incoming and outgoing waves and then selectively suppresses the incoming modes. 
In this paper the method has been extended to handle multi-dimensional 
magnetohydrodynamic (MHD) waves. The results of a 2D case which can be 
solved analytically (for comparison) are presented. The simulation uses a cylindrical 
coordinate grid. In Section 3 the equations for a full 3D simulation of the motion 
of a compressible, magnetic, nonviscous fluid are given and the application of the 
radiation boundary condition for this most general case is described. In Section 4 
the 2D example is described in detail and the results are presented in Section 5. 
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2. PHYSICAL EQUATIONS 

In a full 3D system the motion of a compressible, isothermal, non-viscous, 
perfectly conducting fluid in the presence of a magnetic field is described by: 

Equation of mass conservation (continuity equation): 

Equation of momentum conservation: 

p;+p(v.v)v= -Vp-V@-&Bx(VxB) 

Equation of magnetic flux conservation (induction equation): 

aB 
%=Vx(vxB), 

(2) 

(3) 

supplemented by the equation of state: 

p = c2p (isothermal gas). (4) 

The detailed equations in primitive form are given in the Appendix. 

3. THE RADIATION BOUNDARY CONDITION 

The basic approach of non-reflecting boundary conditions in time-dependent 
problems for non-MHD waves is described in Thompson [ 11. The principles are 
applied here to the full set of equations given in Section 2. The following approach 
is based on the properties of waves in one dimension. While we have no formal 
proof that this technique is valid in problems with more than one spatial dimension 
it seems to work well in many cases of interest, as shown in [I]. 

3.1. Description of the Radiation Boundary Condition 

The boundary conditions to be developed make use of the primitive form of the 
equations (as given in the Appendix), rather than the conservative form, in order 
to simplify the characteristic analysis below. The following analysis assumes that 
the equations are to be solved in cylindrical geometry (coordinates r, 4, and z), for 
the primitive variables p, u, u, w, B,, B,, and B,, as in the Appendix. The non- 
reflecting boundary conditions must be applied in both the r and z directions. The 
general approach taken is as follows. 
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Let U be the vector of dependent variables in the primitive system. The system 
of equations is represented (in cylindrical coordinates) by 

au 
x+A$+F3 

au 
x+c=o, (5) 

where A and B are n x n coefficient matrices and C is a column vector of length n 
which contains all non-derivative (inhomogeneous) terms. 

If we define the quantities (au/&), and (aU/at)z by 

z 
+Bg=O, 

then Eq. (5) may be written as 

(61 

The evaluation of au/at at a boundary in the r direction, say at the outer 
boundary r = r,,, , is non-trivial, as the terms represented by (au/at), contain 
derivatives in the r direction and generally require data exterior to the grid for their 
evaluation. We therefore make use of characteristic analysis to determine which 
contributions to (au/at), may be evaluated from data within the grid, and we 
impose a non-reflecting boundary condition to determine the remaining contribu- 
tions and close the system of equations. 

The contributions to au/at from (S.J/at), and C at the r boundaries do not 
involve derivatives in the r direction and consequently involve data already present 
on the grid. They are computed just as in the interior of the grid. A similar 
approach is taken at the z boundaries, which will therefore not be discussed 
explicitly. We will focus on the evaluation at the r boundaries of (au/at),. 

Note that this partitioning of terms into normal and transverse directions at the 
boundaries implies that the boundaries lie along constant-coordinate surfaces. 
Boundaries which do not satisfy this condition may be dealt with by performing a 
coordinate transformation of the differential equations which aligns the boundary 
with a new coordinate surface. 

We begin by evaluating (au/&), as given by 

Following the procedure in Cl], we first compute the eigenvalues and eigen- 
vectors of the coefficient matrix A. The eigenvalues ,Ii of A, conventionally ordered 
so that ,I,<&< . . . <,I,, represent the characteristic velocities at which the 



346 VANAJAKSHI, THOMPSON, AND BLACK 

different wave modes propagate. If Ii and ri are the left and right eigenvectors of A, 
satisfying 

l:A = Ail;, Ari = Airi, (9) 

(where 1: is the transpose of I,), then Eq. (8) may be written 

or 

(11) 

At the boundary r = rmax, wave modes for which i, > 0 are propagating out of 
the model, and g may be computed from its definition in (11) by using one-sided 
finite difference approximations to au/&, using only interior data. (Similarly, at 
r = rmin we may compute g from its definition in (10) when Ji < 0, using one-sided 
differences, as this case also corresponds to an outgoing wave.) 

However, if Ai ~0 for some modes, then those waves are propagating into the 
model and generally may not be computed from interior data. In this case we make 
use of the nonreji’ecting boundary condition of Ref. [ 1 ] and set 2$ = 0 (and set g = 0 
at the inner boundary if Aj > 0), which may be done conveniently by replacing A, by 
0 in the definition of z. 

We may also define a similarity transformation for the matrix A which generates 
the characteristic form of the wave equations. Let 

S -~ ‘AS = A, (12) 

where the columns of S are the right eigenvectors ri, the rows of S’ are the left 
eigenvectors Ii, and A is the diagonal matrix of eigenvalues, with Aii= li. This 
definition of S in terms of eigenvectors assumes a normalized, bi-orthogonal set of 
vectors satisfying fr. ri= 6,. Multiplying Eq. (8) from the left by S’ gives 

s-’ y ( > 
au 

r +As-‘~=o’ (13) 

which is the complete set of wave equations. 
The nonreflecting boundary conditions are implemented in the form of Eq. (13) 

by replacing the matrix A by A’, where ,4ii = lli for outgoing waves, and nii = 0 
otherwise. 

Given the set of simultaneous equations for the time derivatives (aUi/at),, in the 
form of (13), we then solve for the time derivatives and integrate them to obtain 
the unknowns at the next time step. The solution of (13) may be performed analyti- 
cally or numerically. Analytic solutions are generally preferable, both from the 
standpoint of speed and accuracy. Difficulties may arise in the numerical solution 
if the matrix S- ’ is nearly singular. 
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The most robust solution technique we have found to date relies on a numerical 
solution for the eigenvectors of a modified (symmetrized) version of the matrix A, 
and then takes advantage of the orthogonality of the left and right eigenvectors of 
the symmetric matrix to obtain the solution for the time derivatives. While an 
analytic solution for the eigenvectors would be preferable, it involves special condi- 
tions to be specified for every possible configuration of zero and nonzero magnetic 
field components. The degree of degeneracy of the eigenvalues changes as the 
different field components vanish, leading to a very complicated set of equations for 
the eigenvectors. This problem is avoided by using the semi-analytic approach 
described below. 

3.2. Description of the Semi-analytic Approach 

The solution process is greatly simplified if it is possible to introduce a symmetric 
matrix A’, which is obtained from A by the similarity transformation 

A’s D-‘AD, (14) 

where D is the diagonal matrix that symmetrizes A. 
The eigenvectors (left or right) of A will always be linearly independent, but they 

are not orthogonal, and it is possible that any two of them may be nearly parallel. 
Consequently the matrix S-’ may be ill-conditioned, i.e., so nearly singular that the 
numerical solution of Eq. (13) is poorly determined. In contrast, the eigenvectors 
of the symmetric matrix A’ are orthogonal (as is the case for any symmetric 
matrix), and not only lead to a well-conditioned set of linear equations, but allow 
an analytic solution to the equations. The symmetry of the matrix and the 
orthogonality of the eigenvectors make the numerical determination of the eigen- 
vectors of A’ more accurate as well. 

We now have 
A’G = GA, (15) 

where G is the matrix of right eigenvectors of the symmetrized matrix A’. If the 
right eigenvectors are normalized to have unit modulus, then the transpose of G is 
the same as its inverse, and is the matrix of left eigenvectors; hence 

D ~ ‘AD = GAG=. (16) 

The equation (8U/&),+ A. au/& = 0 can be transformed to yield a set of 
equations which can be solved in a straightforward manner, as shown below: 

r 
+D-‘AF=O, 

= -D(GAG=)D-‘g. 

(17) 

(18) 

We now have an explicit solution for (LNJ/at),. 
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The eigenvector matrix G for the MHD problem is obtained numerically, as are 
the eigenvalues &, but the remainder of the calculation in (18) is performed analyti- 
cally. 

If we now replace A in (18) by A’, then Eq. (18) has the radiative boundary 
conditions built into it. Because the term on the right-hand side can be evaluated 
by one-sided differencing, this set of equations can be solved directly for the six 
variables that constitute the column vector U. For a full 3D case along the r 
boundary, 

u= 

P 

l4 

V 

W 

B, 

BZ 

A= 

P 0 
P U 0 

00 u 

00 0 

0 B, -B, 
0 BZ 0 

and the symmetrized matrix A’ (=D-‘AD) is 

A’= 

u c 0 0 

c u 0 0 

0 0 u 0 

0 0 0 u 

0 

0 

0 

2.4 

0 

-B, 

0 

B4 

0 0 

B,B, 
4np 47tp 

-B, 
47cP 

0 

0 -B, 
4ZP 

24 0 
0 u 

0 

BZ 

(19) 

(20) 

The diagonal elements of the symmetrizing matrix D and its inverse are: 

(21) 

(22) 
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The basic equations used here (( 1 )-( 3) or (45t( 51)) have been taken in their 
most general form. As such it can safely be said that the symmetrizability of the 
matrix and the consequent simplicication of the rest of the approach are likely to 
be applicable in all problems in isothermal fluid dynamics, both magneto- 
hydrodynamic and non-magnetohydrodynamic. For other problems with real 
eigenvalues it may also be possible to symmetrize the initially non-symmetric 
matrices, though not necessarily by using a diagonal matrix. In the latter case one 
might choose a different set of dependent variables such that the resultant matrix 
can be symmetrized easily. 

4. SOLUTION OF THE 2D CASE 

For the first trial a 2D analytical case studied by Mouschovias [2] was tried. 
This case involves a cylindrical cloud of uniform density pCl with a given initial 
angular velocity Q, about its axis of symmetry (the z axis), embedded in an initially 
quiescent external medium of uniform density pext, which is allowed to rotate 
differentially. A frozen-in magnetic field, initially radial and perpendicular to the 
(rotation) axis of symmetry radiates out from the cloud into the external medium 
(see Fig. 1). The angular velocity of the cloud as a function of time is calculated as 
the rotational energy is converted into magnetic energy and pumped out along the 
field lines through Alfven waves. 

Because of the symmetry of the problem the numerical grid need span only the 
region r 2 0, z B 0. Therefore we are concerned only with the boundary along the 
tr direction. Because of the radial field geometry the reflection along the z 
boundary does not arise. 

The assumption of cylindrical symmetry and flux freezing along with the 
constraint V . B = 0, which applies for all the magnetic fields at all times, gives rise 
to the following set of equations for the time evolution of the magnetic field and the 
angular velocity of the cloud and the external medium (Mouschovias [2]): 

(a) External medium: 

aB&, f) = RB aQ(r, t) 
at O dr 

aQ(r, t) RB, @B& -= 
at 4ap,x, ar 

(23) 

(24) 

(Mouschovias [2, Eq. (7), (lo)]). H ere R is the radius of the cloud and B, the 
value of the magnetic field at the cloud surface at t = 0. The external medium is 
allowed to rotate differentially but there is no material exchange across the cloud 
surface or across the external medium. 
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(b) Cloud: 

a&I(t) 4l -=y E&r, t) at PC1 nR (25) 

(for details see [2]). 
When solving this problem numerically the finite grid structure puts an artificial 

limit on the extent of the external medium (in the analytical approach it can be 
assumed to be infinite). This creates problems in the determination of the magnetic 
fields along the boundary, which needs information from regions external to the 
boundary. Any ad hoc approximations to the B field create a spurious, reflected 
Alfven wave. This wave eventually reaches the cloud and spins it up. Application 

%I = Ro 

FIG. 1. Schematic diagram of cloud represented as a shell with equivalent moment of inertia. 



RADIATION BOUNDARY CONDITION FOR hfHD WAVES 351 

of the radiation boundary condition eliminates this problem as the results in 
Section 4 show. 

4.1. Application of Radiation Boundary Condition to the 20 Model 

In this case, we are concerned only with the outer r boundary, and the vector U 
is a column vector with just two elements: 

t-26) 

The two relevant equations are, 

aa -- 
at 

In matrix form 

as,=& 
at 

ao - 
ar ’ 

u=(2), A=(-) -y)> ‘=(-i&j)- (29) 

(27) 

(28) 

Since these equations are simple we carry the C term along instead of splitting 
the equation into the two parts (as in XJ/iYt = (W/at),- C). Thus the two 
equations (27) and (28) are combined into the form 

au au 
PA F,+c=o. (30) 

The eigenvalues of A (the characteristic velocities) are 

Al= -Jm, A,=Jm. (31) 

At the outer radial boundary I, corresponds to the reflected wave and & 
represents the outward travelling wave. As this is a fairly simple problem, we can 
obtain the eigenvectors of A analytically and do not need to set up a numerically 
well-conditioned problem; consequently we do not apply the additional transforma- 
tions described in Section 3 for the 3D case. 

The left eigenvectors fi can be calculated from the equation 

Thus 

lfA=I,l;. (32) 

I,, is arbitrary, (33) 



352 VANAJAKSHI, THOMPSON, AND BLACK 

I,, is arbitrary, 

We now have 

Written out in full, Eq. (36) is 

~~+al~+)., (JB;~+JxEg)-~~BI=o. 

(34) 

(35) 

(36) 

(37) 

(38) 

Since il,, which is negative, corresponds to the reflected wave along the positive 
r direction, application of the radiation boundary condition requires setting Yi to 
zero. Therefore Eq. (37) becomes 

(39) 

while Eq. (38) remains the same. 
These two simultaneous equations can be solved to give aB@t and t&?/at. The 

new values of the variables B, and Q are obtained by integrating the time 
derivatives, as in 

4.2. Details of the Calculation 

It is important to be able to verify numerical schemes through comparison with 
either data or with results obtained from analytic calculations. We were able to use 
the analytic results of Mouschovias [2] as the basis for verification of the numeri- 
cal approach developed here. In order to achieve the accuracy obtained in the 
analytical calculations of Mouschovias [ 21 very line-resolution computational grids 
were used near the interface of the cloud and the external medium. This severely 
restricted the size of the time steps due to the Courant condition for the stability 
of the explicit finite difference approach. Consequently the later part of the time 
evolution of the system required a significant amount of computer time. For this 
reason we elected to compare our results with those of Mouschovias only over the 
first 0.5 Alfven crossing times. That comparison is given in Fig. 2. Therefore once 
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FIG. 2. Angular momentum of cloud as a function of time-tine-grid resolution. 

we had confirmed that the code produced accurate results with this small grid 
spacing we increased the grid spacing and performed the simulations to larger 
times. Once the cell size was made larger the time evolution of the system slowed 
and the angular momentum evolution of the cloud lagged behind that of 
Mouschovias. Three sets of runs were completed: 

1. The first run was performed without the reflection boundary condition for 
purposes of comparison (curve 1, Fig. 3). 

2. The second was a run with the nonreflecting boundary condition in force 
(curve 2, Fig. 3). 

3. The third was performed with the external medium 3 times as large as for 
the previous runs so that reflection did not occur during the time scale of the run 
(curve 3, Fig. 3). 

In order to simulate this case numerically we used a cylindrical grid structure 
with 90 grid points in the radial direction. In all runs the cloud occupied the inner- 
most five grid points. This is because, in this situation, the cloud is considered a 
rigid body with a constant (radial) magnetic field B, and all the changes occur from 
the interface outwards. The only cell that is of interest from inside the cloud is the 
one just inside the cloud boundary forming the interface between the cloud and the 
external medium. Spatial derivatives at the interface have to take into account the 
values of the variables at the center of this grid. But all the cells interior to this 
border cell are irrelevant to the numerical computations. Therefore most of the grid 
points are dedicated to the external medium. However this approach necessitates 
certain modifications in the way the cloud is represented, for the following reason: 

581/84/2-i 
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FIG. 3. Angular momentum of cloud as a function of time. 

Since there are only five grids inside the cloud, if they are equally, or even 
geometrically spaced, the width of the border cell will be much larger than that of 
the cell immediately on the other side of the interface (- 1/90Ro if evenly spaced 
grids and smaller still if geometric progression is used for the spacing in the external 
medium). This discrepancy in the widths can cause gross inaccuracy in the results 
due to uneven spatial derivatives. To avoid this the cells on both sides have to have 
the same (small) width AR. To achieve this and at the same time keep the number 
of grids small inside the cloud we represented the cloud as a cylindrical shell (of 
different density) whose moment of inertia is the same as that of a rigid sphere of 
radius R, and density pC,. (Since there are no variations in the Z-direction the 
cloud is equivalent to a cylinder stacked with rigid disks with the axis of the 
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cylinder being the Z-axis of the grid.) This approach also obviates the necessity of 
artificially redistributing the angular momentum, at each time step, inside the cloud 
in order to represent rigid body rotation. When configured in this fashion the cloud 
is represented by this shell for all practical purposes and maintains the accuracy of 
the calculations. The grids interior to the shell are completely ignored in the com- 
putations. This shell can be made as thin as necessary by increasing its density 
correspondingly. The appropriate density for the shell is calculated from the 
equation: 

Pshell = Pcloud 

A shematic diagram (Fig. 1) illustrates the concept. 
The spacing of the grid points outside the cloud, i.e., in the external medium, was 

computed using geometric progression, 

AR J+I=~AR, (42) 
n-1 

Ro= 1 

1 -an 
ak AR,=: 

l-a AR,, 
k=O 

(43) 

where n = number of grids in the external medium. From this relation a is 
calculated using Newton’s method. Typical values for a fall in the range 
1.0259-1.1425 depending on the number of grid points used. Several different values 
of AR, corresponding to different numbers of cells were tried in order to achieve 
maximum sensitivity near the interface, subject to the limitations posed by numeri- 
cal accuracy. But the value of a remained constant for every set of the three runs 
referred to earlier. For run 3 we used 270 grid points with the same ratio a as in 
the other two runs. 

This simulation was performed using a full 3D MHD code and we allowed 10 
grid points in the Z-direction just to make sure that the code indeed reproduced the 
results faithfully when there was no variation in the Z-direction and that no 
instability was introduced by numerical noise for this direction. 

5. RESULTS 

The results are presented in Fig. 3. It shows the (non-dimensional) angular 
velocity of the cloud Q/Q, as a function of time in units of Alfven crossing time to, 
where 

RO Ro 
T”=VAO=BOJG. (44) 
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Curve 1 corresponds to run 1 without the nonreflecting boundary condition. It 
can be seen that the maximum retrograde motion (negative Q/Q,) is much less 
( -0.15) than the other two cases ( -0.35). This happens because the reflected wave 
has traveled back to the center by this time and is starting to spin the cloud up in 
the other direction. As the system evolves further in time the retrograde motion is 
stopped completely and by four Alfven crossing times the cloud is starting to gain 
angular momentum in the positive direction and continues to do so as time goes 
on. 

Curve 2 corresponds to the run with the nonreflecting boundary condition in 
effect and the results are quite different. After reaching a maximum retrograde 
motion of Q/52, = - 0.35 the rotation of the cloud asymptotically tends to zero by 
about seven Alfven crossing times. Around 4.67, there is a small wiggle in the curve, 
presumably due to numerical inaccuracies. 

Curve 3 corresponds to the run with the extended external medium so that the 
wave keeps travelling outward for the duration of the simulation. As can be seen 
from the plot, the two curves 2 and 3 are almost identical except for the numerical 
noise around 4.67,,. 

We interpret the wiggle in curve 2 at -57, as numerical noise due to insufficient 
grid resolution rather than reflection of Alfven waves at the boundary for the 
following two reasons: (1) Runs corresponding to curve 2 with coarser grids 
showed similar but larger deviations between curves 2 and 3; (2) If there is reflec- 
tion its effect should have been observed once the reflected wave reached the cloud 
boundary. This would have occurred - 1.67, since the wave takes 0.87, to traverse 
the external medium between the cloud boundary and the outer boundary. An 
examination of curves 2 and 3 shows that the curves overlap completely for a long 
time ( ~4.57~) which is sufficient for several reflections. In test cases where reflec- 
tions are not suppressed-such as run l-the deviation, once it starts, grows 
rapidly once the reflected wave reaches the cloud interface the first time. 

Application of the nonreflecting boundary condition has suppressed the reflected 
wave and given the physically correct results. 

6. CONCLUSION 

A method for obtaining nonreflecting boundary conditions in magnetized, com- 
pressible, isothermal inviscid, multi-dimensional fluids has been developed and 
applied to a 2D case of a rotating, rigid disc (actually a rigid, spherical cloud) with 
a radial magnetic field, embedded in an external medium of different density and 
capable of differential rotation. The external medium is initially at rest. The angular 
velocity of the disc (cloud) changes (decreases) due to the twisting of the field lines 
at the interface of the cloud and the external medium, giving rise to Alfven waves 
and converting rotational energy into magnetic energy. The time evolution of the 
system is followed through numerical modeling of the full fluid equations. The non- 
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reflecting boundary condition is applied to eliminate spurious reflection of the 
Alfven waves at the numerical boundary, at the edge of the external medium. The 
method is applicable to a full 3D model with no simplifying assumptions for the 
most generalized form of the isothermal fluid equations. In the test case used to 
verify the method, the run with the nonreflecting boundary condition in place was 
compared with a run where the external medium was extended to 3 times its 
original length so that the waves do not get a chance to encounter the numerical 
boundary during the time period of interest. The results of the two cases match 
accurately. A comparison run without the nonreflecting boundary condition obtains 
a large deviation of the system in the latter part of the time evolution in comparison 
with the other cases (where reflection does not occur), showing clear evidence of 
multiple reflections of the Alfven wave. We believe that this method can be applied 
to most modeling problems with magnetized, compressible, inviscid fluids and the 
only exceptions may be cases where the elements of the coefficient matrix are such 
that they give rise to ill-conditioned matrices of eigenvectors. 

Further applications of this method with extensions for handling (real) incoming 
waves have been completed recently. We have also applied this method to a 
genuine 2D case of 2-dimensional solar wind models. The models solve the time- 
dependent MHD equations for a magnetized wind with rotation. The full 3D equa- 
tions are used with no azimuthal variation. The approach detailed in this paper was 
successfully applied not only to handle nonreflecting boundary conditions but to 
treat incoming waves as well. Details of this study will be reported in a subsequent 
paper. 

APPENDIX: DETAILED EQUATIONS 

The variables to be solved for are the mass density p; the r, 4, and z components 
of the velocity (u, u, w); and the magnetic field components (B,, B,, B,). The 
primitive system of equations corresponding to Eq. (l)-(3) in component form is: 

Continuity equation: 

ap ap au v ap p au ap aw pu 
-$+u~+p-+--+--+w;Iz+p~+-=o; 

ar r ad r ad r (45) 

Navier-Stokes equation: 

au 2 ap au B, aB, B, a& V au 

z+;ar+%+4Kp,,+,,,Sr+;&i 

B, a& au --- 
4rcpr a4 + w aZ 

&.q-,,)=” (46) 
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av 
at+” 

au B, a& C’ ap V aV B aB ----++-++-++L 
dr 47~~ ar pr a$ r ad 4npr ad 

B aB au B aB, -i_-f+,--L_.+ 
+47~pr a# aZ 4np aZ 

I a@ 
gm= ---1 r a4 

+we+r B aB --‘+B,dB,_(g,)=o, 
az 4np az 4ap az (48) 

Induction equation: 

+B ?+W”8’-uas,-, 
r a2 aZ aZ - ’ 

a4 -Ei;fB,+B,$-vs 
ar +’ 

+waB,+B !!!i.!- 
aZ + a2 

(49) 

(50) 

a4 
x+Bz 

aB B au $+w~+u$+L- 
r a4 

B,aW W aB+ Vi& 
------+- 

r a4 r a4 
(51) 

For the r direction Eq. (49) does not contribute to the matrix A, because this 
equation does not have au/& terms. Therefore it is evaluated with ordinary finite 
difference formulas at the r boundaries. For the z direction Eq. (51) is left out of 
the matrix for the same reason. 
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For the z direction U and A are 

u= 

P 

u 

V 

W 

4 

B, 

> A= 

and the symmetrized matrix A’ ( ED - ‘AD) is 

W 0 0 C 

0 w 0 0 

W 0 0 p 0 0 

ow 00 -B; 

4TP 
0 

00 woo -B, 
4np 

c2 7 0 B 0 w 2 B, 
47cp 47Tp 

0 -B, 0 B, w 0 
0 0 -B, B, 0 w 

A’ = 

0 0 W 

c 0 0 

02 0 

0 0 j$ 

0 

W 

B, 

J4nP 

B, 
JG 

0 

y+ 

0 

W 

0 

\ 
0 

0 

j$ 

B, 
JG 

0 

W 

J 

359 

9 (52) 

(53) 

The diagonal elements of the symmetrizing matrix D and its inverse are the same 
as for the r direction. 
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